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Abstract

A cluster of cycles(or (r, q)-polycycle) is a simple planar 2-connected finite or countable graph
G of girth r and maximal vertex-degreeq, which admits an(r, q)-polycyclic realizationP(G) on
the plane. An(r, q)-polycyclic realization is determined by the following properties: (i) all interior
vertices are of degreeq; (ii) all interior faces (denote their number bypr ) are combinatorialr-gons;
(iii) all vertices, edges and interior faces form a cell-complex.

An example of(r, q)-polycycle is the skeleton of(rq), i.e. of theq-valent partition of the sphere,
Euclidean plane or hyperbolic plane by regularr-gons. Callsphericpairs(r, q) = (3,3), (4,3),
(3,4), (5,3), (3,5). Only for those five pairs,P((rq)) is (rq) without exterior face; otherwise,
P((rq)) = (rq).

Here we give a compact survey of results on(r, q)-polycycles. We start with the following general
results for any(r, q)-polycycleG: (i) P(G) is unique, except of (easy) case whenG is the skeleton
of one of the five Platonic polyhedra; (ii)P(G) admits a cell-homomorphismf into (rq); (iii) a
polynomial criterion to decide if given finite graph is a polycycle, is presented.

Call a polycycleproper if it is a partial subgraph of(rq) and ahelicene, otherwise. In [ARS
Comb. A 29 (1990) 5], all proper spheric polycycles are given. An(r, q)-helicene exists if and
only if pr > (q − 2)(r − 1) and (r, q) �= (3,3). We list the (4,3)-, (3,4)-helicenes and the
number of (5,3)-, (3,5)-helicenes for first interestingpr . Any outerplanar(r, q)-polycycleG is
a proper(r,2q − 2)-polycycle and its projectionf (P (G)) into (r2q−2) is convex. Any outerplanar
(3, q)-polycycleG is a proper(3, q + 2)-polycycle.

The symmetry groupAut(G) (equal toAut(P (G)), except of Platonic case) of an(r, q)-polycycle
G is a subgroup ofAut((rq)) if it is proper and an extension ofAut(f (P (G))), otherwise.Aut(G)

consists only of rotations and mirrors ifG is finite, so its order divides one of the numbers 2r, 4 or
2q. Almost all polycyclesG have trivialAutG.

Call a polycycleG isotoxal(or isogonal, or isohedral) if AutGis transitive on edges (or vertices,
or interior faces); use notation IT (or IG, or IH), for short. Onlyr-gons and non-spheric(rq) are
isotoxal. LetT ∗(l, m, n) denote Coxeter’s triangle group of a triangle onS2, E2 or H 2 with an-
glesπ/l,π/m,π/nand letT (l,m, n)denote its subgroup of index 2, excluding motions of 2nd kind.
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We list all IG- or IH-polycycles for spheric(r, q) and construct many examples of IH-polycycles for
general case (withAutGbeing above two groups for some parameters, including strip and modular
groups). Any IG-, but not IT-polycycle is infinite, outerplanar and with same vertex-degree, we
present two IG-, but not IH-polycycles with(r, q) = (3,5), (4,4) andAutG = T (2,3,∞) ∼
PSL(2, Z), T ∗(2,4,∞). Any IH-polycycle has the same number of boundary edges for each its
r-gon. For anyr ≥ 5, there exists a continuum ofquasi-IH-polycycles, i.e. not isohedral, but all
r-gons have the same 1-corona.

On two notions of extremal polycycles:

1. We found for the spheric(r, q) the maximal numbernint of interior points for an(r, q)-polycycle
with givenpr ; in general case,(pr/q) ≤ nint < (rpr/q) if any r-gon contains an interior point.

2. All non-extendible(r, q)-polycycles (i.e. not a proper subgraph of another(r, q)-polycycle)
are(rq), four special ones, (possibly, but we conjecture their non-existence) some other finite
(3,5)-polycycles, and, for any(r, q) �= (3,3), (3,4), (4,3), a continuum of infinite ones.

On isometric embedding of polycycles into hypercubesQm, half-hypercubes12Qm and, if infinite,
into cubic latticesZm, 1

2Zm: for (r, q) �= (5,3), (3,5), there are exactly three non-embeddable
polycycles (including(43) − e, (34) − e); all non-embeddable (5,3)-polycycles are characterized
by two forbidden sub-polycycles withp5 = 6. © 2002 Elsevier Science B.V. All rights reserved.
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1. Definition and examples

A cluster of cycles(apolycycle, for short, or(r, q)-polycycle) is a simple planar 2-(vertex)-
connected finite or countable graphG of girth r and maximal vertex-degreeq, which admits
an(r, q)-polycyclic realizationP(G) on the plane.

An (r, q)-polycyclic realization is determined by the following properties:

1. all interior vertices are of degreeq;
2. all interior faces are (combinatorial)r-gons;
3. all vertices, edges and interior faces form a cell-complex (i.e. the intersection of any two

faces is edge, vertex or∅).

One can show that (3) follows from (1) and (2), while neither (1) and (3) imply (2), nor (2)
and (3) imply (1).

For example,(3, q)- and(4, q)-polycycles are just simplicial and cubical complexes of
dimension 2.

The main example of(r, q)-polycycle is the skeleton of(rq), i.e. of theq-valent parti-
tion of the sphereS2, Euclidean planeR2 or hyperbolic planeH 2 by regularr-gons. For
(r, q) = (3,3), (4,3), (3,4), (5,3), (3,5), the unique(r, q)-polycycle is, respectively, Pla-
tonic tetrahedron, cube, octahedron, dodecahedron, icosahedron onS2, but with excluded
exterior face; for (r, q) = (6,3), (3,6), (4,4), it is regular partition(63), (36), (44) of R2;
all other(rq)s are regular partitions ofH 2.
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Call a polycycleproperif it is a partial subgraph of (the skeleton of) the regular partition
(rq). Call a proper(r, q)-polycycleinduced(moreover,isometric) if it is induced (moreover,
isometric) subgraph of(rq).

Call an(r, q)-polycyclespheric,Euclideanorhyperbolic, if (rq) is the regular partition of
S2, R2 orH 2, respectively. (One can also use termselliptic, parabolicor hyperbolic, since
rq < 2(r + q), rq = 2(r + q) or rq > 2(r + q), respectively.) There is a literature (see e.g.,
Section 9.4 of [17] and [4]) about proper Euclidean polycycles (polyhexes, polyamonds,
polyominoesfor (63), (36), (44), respectively); the terms come from usual termshexagon,
diamond, domino, where the last two correspond to the casep3,p4 = 2. Polyominoes were
considered first by Conway, Penrose, Colomb as tilers (ofR2, etc.; see e.g. [7]) and in the
games; later they were used for enumeration in physics and statistical mechanics. Polyhexes
are used widely (see e.g. [3,16]) in organic chemistry: they representcompletely condensed
polycyclic aromatic hydrocarbons(PAHs) CnHm with n vertices (atoms of the carbon C),
includingm vertices of degree 2, where atoms of the hydrogen H are adjoined. All 39 proper
(5,3)-polycycles were found in [8] in chemical context, but already in [18] were given all 3,
6, 9, 39, 263 proper spheric(r, q)-polycycles for(r, q) = (3,3), (4,3), (3,4), (5,3), (3,5),
respectively.

A general theory of polycycles is considered in [10–15,21,22], namely proofs can be
found as follows: Theorem 1 in [21,22], Theorems 2 and 3 in [10,12,13], Theorems 4–6 in
[14], Theorems 7–9 in [15] and Theorem 10 in [11,14].

2. Criterion and unicity

Theorem 1. Let G be any finite connected graph of girth r, different from the skeleton of
(33), (34), (43), (35), (53); let v, e, f be its number of vertices, edges and r-cycles, respec-
tively. Then G is(r, q)-polycycle if and only if it holds.

1. Any edge belongs to one or two r-cycles of the graph G.
2. All edges, belonging to exactly one r-cycle of G, form a simple cycle.
3. The intersection of any two different r-cycles is an edge, a vertex or∅.
4. v − e + f = 1.
5. All r-cycles with common vertex can be organized into a sequence, such that any two

neighbors have the common edge, containing the common vertex, and this sequence has
at most q members with equality if and only if it is closed(i.e. the sequence form a
cycle).

It is clear that: (1) implies thatG is 2-connected, (5) implies that any interior vertex ofG

has degreeq and that forq = 3 the condition (5) is implied by (1)–(4) with exclusion in
(3) of the case of intersection in a vertex.

Theorem 2. Let G be an(r, q)-polycycle. Then

1. If G is the skeleton of one of the five Platonic polyhedra, then the number of(r, q)-poly-
cyclic realizations of G is equal to the number of faces of the Platonic polyhedron and
all those realizations are isomorphic.
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2. Any other polycycle G has unique(r, q)-polycyclic realization and the number of its
interior faces (which are all should be r-gons) is the number of r-cycles of G.

The(r, q)-polycyclic realizationP(G) of a non-Platonic(r, q)-polycycleG is, in general,
not uniqueplanar realization of polycycleG.

3. Proper polycycles versus helicenes

First, we list all (3,3)-, (4,3)-, (3,4)-polycycles. Clearly, all (3,3)-polycycles are(33),
(33)-v and(33)-e (i.e. a vertex with incident edges, or an edge is deleted); the last one is
not induced.

We denote byPn a path withn vertices and byPN , PZ infinite paths in one or both
directions. All (4,3)-polycycles are:(43), (43)-v, (43)-e, P2 ×Pn for any naturaln and two
infinite ones:P2 ×PN , P2 ×PZ. Only (43), (43)-v, P2 ×P2, P2 ×P3, P2 ×P4, (43)-e are
proper; the last two are not induced.

The number of (3,4)-polycycles is also countable, including two infinite ones (nine
of the (3,4)-polycycles are proper and five of the proper ones are induced), namely all
(3,4)-polycycles are: proper ones(34), (34)-v, (34)-e, (34)-P3, (34)-C3, Gn (1 ≤ n ≤ 4)
and unproper onesGn (n ≥ 5 andn = N,Z) and thevertex-split(34), defined below. Here
Gn = An/2 if n is even,Gn = B(n+1)/2 if n is odd,Gn = An if n = N,Z, whereAm is
(4,3)-polycycleP2 × Pm with parallel diagonals, added one on each square, andBm isAm

without a vertex of degree 2.
For all other(r, q), there is a continuum of(r, q)-polycycles and the number of finite

ones among them is countable.
Call vertex-split(34), a (3,4)-polycycle, coming from(34) as follows: letKx,{a,b,c,d}

be induced 4-wheel in(34), then replace the edges(x, a), (x, b) of (34) by the edges
(x′, a), (x′, b), wherex′ is a new vertex of degree 2. (Curiously, this plane graph is the logo
of the HSBC, Hong Kong and Shanghai Banking Corporation.)

Call vertex-split(35), a (3,5)-polycycle, coming from(35) as follows: letKx,{a,b,c,d,e}
be induced 5-wheel in(35), then replace the edges(x, a), (x, b) of (35) by the edges
(x′, a), (x′, b), wherex′ is a new vertex. See both polycycles in Section 5.2.

3.1. Cell-homomorphism into(rq) and helicenes

Theorem 3. Any(r, q)-polycyclic realizationP(G) admits a cell-homomorphism into(rq)
and such homomorphism is defined uniquely by a flag(i.e. incident vertex, edge and interior
face ofP(G)) and its image.

Clearly, the above homomorphism is an isomorphism if and only ifG is a proper polycycle
(i.e. if the mapP(G) → (rq) is topologic: there is no pair of vertices or of edges, having the
same image). In view of Theorem 3, any unproper(r, q)-polycycle is called(r, q)-helicene.

It is easy to check that(r, q)-helicenes exist if and only if(r, q) �= (3,3) andpr ≥
(q − 2)(r − 1)+ 1 with equality only for the helicene being a belt ofr-gons, going around
an r-gon. All (4,3)-helicenes are two infinite ones:P2 × PN , P2 × PZ andP2 × Pn for
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any n ≥ 5; given above full description of all (3,4)-polycycles, permit also to list all
(3,4)-helicenes. We counted that the number of (5,3)-helicenes is 1, 7, 29 forp5 = 5,6,7
and the number of (3,5)-helicenes is 1, 4, 20, 74 forp3 = 7,8,9,10.

A natural parameter to measure an(r, q)-helicene will be the degree of the corresponding
homomorphism into(rq) (on vertices, edges and faces). Forq ≥ 4, helicenes appear with
vertices, but not edges, having same homomorphic image. The vertex-split(34) is unique
such maximal helicene for(r, q) = (3,4) (x, x′ are such vertices). There is a finite number
of such helicenes for(r, q) = (3,5); one of them is the vertex-split(35).

3.2. Cell-complexesP(G), K(G), X(G) and the curvature

Denote byK(G) the abstract two-dimensional polyhedron with a metric, such that all
r-gons ofP(G) became planar Euclidean regularr-gons; clearly, there is combinatorial
cell-isomorphism betweenK(G) andP(G). The mapK(G) → K(rq) is a geometric
realization of the combinatorial mapP(G) → (rq), such that the homomorphism is lo-
cally homeomorphic, i.e. it is continuous cell-map with isomorphicε-neighborhood for
sufficiently smallε (homeomorphicmeansisometricandglobal homeomorphism means
isomorphism).

The Gaussian curvature of a point inK(G) is 2π −q((r −2)/r)π in each interior vertex
(since in each interior vertex meetq angles of regular Euclideanr-gons) and 0 in any other
point (sinceK(G) is a disc glued from Euclideanr-gons). So the global curvature ofK(G)

is the sum of its curvatures in interior vertices:

nint

(
2π − q

(
r − 2

r

)
π

)
= nint

π

r
(2(r + q) − rq).

For example, the curvature ofG is 3π for G = (35), (53), 2π for G = (43), (34) andπ for
G = (33) (while the curvature of the sphereS2 is 4π ).

Denote byX(G) the metric space ofconstantcurvature, obtained fromP(G) by intro-
ducing a metric on it, which is locally spheric, locally Euclidean or locally hyperbolic, if
(rq) is a regular partition ofS2, R2 orH 2, respectively.X(G) has also cell structure, glued
from, in general, non-Euclidean faces, but here we consider it as an abstract cell-complex.
Clearly,X(G) = K(G) for (r, q) = (4,4), (6,3), (3,6). In general, both complexes are
homeomorphic as manifolds and have the same curvature, but it is non-zero only on inte-
rior vertices ofK(G) and it is constant on all points ofX(G). There is cell-isomorphism
amongst complexesX(G), K(G), P(G) and each of them admits cell-homomorphism on
corresponding complex of(rq).X(G) is also simply connected two-dimensional manifold,
which is homeomorphic to a disc ifG is finite and non-compact, otherwise. The manifold
X(G) has no boundary only ifG is the skeleton of partition(rq) of Euclidean or hyperbolic
plane. All faces of the complexX(G) are regularr-gons with angles(2π)/q, while the
faces of complexK(G) are regular Euclideanr-gons with angles(r − 2)π/r.

3.3. Outerplanar polycycles

Call a polycycleouterplanarif it has no interior points, i.e.nint = 0; clearly, it is an
(r, q ′)-polycycle for any q ′ not less than the maximal degree of vertices. The
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following theorem show that, in a way, outerplanar polycycles are close to proper poly-
cycles.

Theorem 4.

1. Any outerplanar(r, q)-polycycle G is a proper(r,2q − 2)-polycycle and its projection
f (P (G)) into (r2q−2) is convex(onS2, R2 or H 2).

2. Any outerplanar(3, q)-polycycle is a proper(3, q + 2)-polycycle.

The proof uses the fact that the projection on(rq) of polycyclic realization of the graph,
being simply connected, is convex if and only if all boundary angles are less thanπ (the
boundary will be a union of convex polygons).

Remark that already forp3 = 7, there are outerplanar (3,4)- and (3,5)-polycycles, which
remain unproper in(35), (36), respectively. Afan of (q − 1) r-gons withq-valent com-
mon (boundary) vertex, is an example of outerplanar(r, q)-polycycle, which is a proper
non-convex(r,2q − 3)-polycycle.

3.4. Proper and reciprocal polycycles

For a proper polycycle, we are interested when it is induced (or, moreover, isomet-
ric) subgraph of(rq). For (r, q) = (3,3), (4,3), (3,4), any induced(r, q)-polycycle for
(r, q) = (3,3), (4,3), (3,4) is isometric, but, e.g., the path of the three pentagons is induced
non-isometric (5,3)-polycycle. Any isometric polycycle is embeddable (see Section 7), but
already forp5 = 6, there exists a non-embeddable induced (5,3)-polycycle.

Other possible property of a proper(r, q)-polycycle is being convex in(rq) (see Theorem
4 and remark after lemma below). Consider now the notion of reciprocity, defined for some
proper polycycles.

LetP be a proper bounded(r, q)-polycycle. Consider the union of all (r-gonal) faces of
(rq) outside ofP . Easy to see that this union will be an(r, q)-polycycle (and call it then
reciprocal toP ) if and only if, eitherP is spheric, orP is infinite and has connected boundary.
Call a polycycleself-reciprocalif it admits the reciprocal polycycle and is isomorphic to it.

All self-reciprocal(r, q)-polycycles with(r, q) = (3,3), (4,3), (3,4), (5,3) are(33)-e,
(43)-v, P2 × P3, (34)-v, (34)-C3, (34)-2K2 and nine (out of 11) (5,3)-polycycles with
p5 = 6, including six chiral ones. An example of self-reciprocal(3, q)-polycycle for any
q ≥ 3 is a(3, q)-polycycle on one of the two shores ofzigzag path, cutting (3q) in two
isomorphic halves; it includes(33)-e and(34)-C3 and infinite forq ≥ 6.

4. Symmetries of polycycles

The symmetry groupAutGof an(r, q)-polycycleG is a subgroup ofAut(rq) if it is proper
and an extension ofAut(HomG), otherwise; hereHomGdenotes the cell-homomorphism
projection ofP(G) into (rq). We haveAutG = AutP(G), except of the case ofG being
one of the five Platonic(rq). If an (r, q)-polycycleG is finite andP(G) has a fixed point
inside it, thenAut(G) consists only of rotations and mirrors around this point. So its order
divides 2r, 4 or 2q, depending on whatAutGfixes: the center of anr-gon, the center of an
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edge or a vertex (the corresponding groups areDrh, D2h, Dqh). (AboveAutG is given, for
finite polycycleG, as a space group, i.e. we discard plane mirror.) None of the (3,3)-, (3,4)-,
(4,3)-polycycles, but almost all(r, q)-polycycles for any other(r, q), have trivialAutG. The
number ofchiral (i.e. with AutGcontaining no mirrors) proper (5,3)-, (3,5)-polycycles is
12, 208 (amongst, respectively, all 39, 263).

Call a polycycleG isotoxal(or isogonal, or isohedral) if AutG is transitive on edges (or
vertices, or interior faces); use notation IT-(or IG-, or IH-), for short.

Let T ∗(l, m, n) denote Coxeter’striangle groupof a fundamental triangle with angles
π/l,π/m,π/n. LetT (l,m, n)denote its subgroup of index 2, excluding motions of 2nd kind
(i.e. those changing orientation); see e.g. [20, pp. 81,90,107,176,183]. Now,T ∗(2,2,∞) =
pmm2, T (2,2,∞) = p112 ≈ pm11 ≈ pma2. (Remark thatp1m1 also has index 2 in
T ∗(2,2,∞), but it is not isomorphic toT (2,2,∞).) On the other hand,T (2,3,∞) ≈
PSL(2, Z) (the modular group) andT ∗(2,3,∞) ≈ SL(2, Z). For all but one (the last in
Fig. 4) known families of infinite IG- or IH-polycycles,AutG, if it is not a strip group, is
one of the above two groupsT (l,m, n), T ∗(l, m, n) for some parameters. For all known
such polycycles with strip groupAutG (see Fig. 3), this group is isomorphic to one of
T ∗(2,2,∞), T (2,2,∞).

Only r-gons and non-Platonic(rq) are isotoxal; their respective symmetry groups are
Drh andT ∗(l, m, n). Aut(rq) = Drh in five Platonic cases; none is IT-, IG- or IH-polycycle,
except isohedral(33).

We conjecture that all polycycles, which are isogonal and isohedral, but not isotoxal,
are the infinite (3,4)-polycycle from 3rd column in Fig. 1 and(2k,3)-cactusesfor any
k ≥ 2 (with AutP = T ∗(2, k,∞)) and we checked this conjecture for spheric(r, q).
In fact, only other IG-, but not IT-polycycle in Fig. 1 of all spheric IH-polycycles, is
P2 × PZ, i.e. the (4,3)-cactus. The cactuses are infinite polycycles obtained by the pro-
cedure, which is clear from Figs. 2 and 4. The(2k,3)-cactuses for anyk ≥ 3 corre-
spond to the casea = 0 of the first family in Fig. 4; they are only isogonal polycycles in
Fig. 4.

Theorem 5.

1. Any IG-, but not IT-polycycle is infinite, outerplanar and with the same vertex-degree.
2. There exist two IG-, but not IH-polycycles with(r, q) = (3,5), (4,4) (see Fig.2; their

groups areT (2,3,∞), T ∗(2,4,∞)) and this(3,5)-polycycle is unique, such spheric
polycycle.

Theorem 6. Let P be an isohedral(r, q)-polycycle. Then

1. P has the same number t of non-boundary edges for each its r-gon;
2. if t = 0, r or 1, then P is r-gon, (rq) (with (r, q) �= (4,3), (3,4), (5,3), (3,5)) or a pair

of adjacent r-gons(and AutP= D2h);
3. if t = 2, then P is either a star of q r-gons with one common interior vertex, or an infinite

outerplanar polycycle;
4. there exist exactly two infinite isohedral(3, q)-polycycles: both infinite polycycles from

the 5th column in Fig.1 (both with AutP= pma2 ≈ T (2,2,∞));
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Fig. 1. All isohedral spherical polycycles (onlyr-gons and two infinite ones withr, q different from 5, are isogonal).

Fig. 2. Examples of isogonal but not isohedral polycycles.
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Fig. 3. Examples of isohedral polycycles with strip groups.

Fig. 4. Examples of families of isohedral cactuses.
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5. if 1 ≤ t ≤ r − 3, then P is infinite; for any r, there exists isohedral(r,4)-polycycle with
t = r − 1 (take an r-gon with right angles and AutP, generated by mirrors from all but
one of its sides);

6. all spheric isohedral polycycles are(see Fig.1): 11 finite ones(see(2) above) and
eight infinite ones(P2 × PZ), six its decorations(all with strip groups AutP) and the
(5,3)-cactus with AutP= T ∗(2,3,∞);

7. eight families of isohedral decorations ofP2 × PZ are given in Fig.3; ninefamilies of
isohedral decorations of(r, q)-cactuses are given in Fig.4.

Remark that 1st, 2nd decorations in Fig. 3 are the casek = 2 of, respectively, 1st, 4th
cactuses in Fig. 4. Amongst the eight decorations in Fig. 3, only the casea = 0 of the 4th
one is isogonal.

The group of the last family in Fig. 4 is in 1–1-correspondence withT (2,2,∞), but
different from it. It is the product ofT ∗(∞,∞,∞) and the group (of order 3) of congruence
of the triangle with all vertices in infinity.

For anyr ≥ 5, there exists a continuum ofquasi-IH-polycycles, i.e. not isohedral, but
all r-gons have the same 1-corona. In fact, letT be an infinite, in both directions, path of
regularr-gons, such that for any of them, the edges of adjacency to its neighbors are at
distance�(r − 3)/2� and the sequence of (one of the two possible) choices of joining each
newr-gon, is aperiodic and different from its reversal. There is a continuum of suchT for
any r ≥ 5. Any T is quasi-isohedral and its group of automorphism is trivial. Also,T is
embeddable (see Section 7); it is unproper ifr = 5,6 and isometric ifr ≥ 7.

5. Two extremal properties

5.1. Maximal number of interior points

Recall thatpr(P ), nint(P ) denote the number of interior faces and interior vertices of
given finite(r, q)-polycycleP . Call (nint(P ))/(pr(P )) thedensityof P and denote byn(x)
the maximum ofnint(P ) over all (r, q)-polycyclesP with pr(P ) = x; call extremalany
(r, q)-polycycleP with nint(P ) = n(x). So, extremal polycycles represent opposite case
to outerplanar ones (see Section 3.3), with the samepr . Clearly, an extremal polycycle
also maximizes the numbereint of non-boundary edges and minimizes the number Per (for
perimeter) of boundary edges (or boundary points), as well as the numbern of all vertices
and the numbere of all edges. In fact, Euler formula

(nint + Per) − (eint + Per) + (pr + 1) = 2,

and equalityrpr = 2eint + Per, imply

nint = eint − pr + 1 = −1
2Per+ 1

2pr(r − 2) + 1 = −e + pr(r − 1) + 1

= −n + pr(r − 2) + 2.

For (5,3)-polycycles withx ≤ 11,n(x) was found in [8]; all extremal (5,3)-polycycles turn
out to be proper and unique. Moreover, the (5,3)-polycycles, which are reciprocal to any
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such extremal one, turn out to be also extremal. Cyvin et al. [8] asked aboutn(x) for x ≥ 12;
this section answers this question for anyx and for all spheric(p, q).

First, consider three trivial cases of(r, q). All pairs(pr , nint) for (p, q) = (3,3) are (1,0),
(2,0), (3,1); for(p, q) = (4,3): (n,0) for all n ≥ 1, (3,1), (4,2), (5,4); for(p, q) = (3,4):
(n,0) for all n ≥ 1, (4,1), (5,1), (6,1), (6,2), (7,3).

Call kernelof a polycycle, the cell-complex of vertices, edges and faces of the polycycle,
which are not incident with its boundary. Call a polycycleelementaryif it is a r-gon or if
it has non-empty connected kernel, such that the deletion of any face from the kernel will
diminish it (i.e. any face of the polycycle is incident to its kernel).

Lemma

1. Any (r, q)-polycycle with(r, q) = (3,3), (3,4), (4,3), (3,5), (5,3) is a union of ele-
mentary polycycles without common faces.

2. For (r, q) = (6,3), (4,4), (3,6) and for the caser ≥ 7, q ≥ 3, there is a continuum of
connected(components of) kernels of(r, q)-polycycles.

In the above lemma (2) and forr ≥ 7, q ≥ 4, one can find, moreover, a continuum of
elementary(r, q)-polycycles, which are proper and convex on the hyperbolic plane.

The part (1) of the above lemma does not hold already for(r, q) = (6,3): two elementary
polycycles, having each a single point as the kernel, can be glued into a (6,3)-polycycle with
p6 = 5, having two isolated vertices as (disconnected) kernel, but elementary polycycles,
having those vertices as kernels, have a common 6-gon.

We believe that for each non-spheric(r, q), amongst extremal(r, q)-polycycles there
exist a proper one; in fact, each known extremal(r, q)-heliceneP haspr(P ) > pr(r

q).
Theextremal animalsof [19] are, in our terms,proper(4,4)-, (6,3)- and (3,6)-polycycles

with minimal number of edges and so, maximal number of interior vertices, for a given
number of interior faces. It was proved in [19] that such polycycles havee = 2p4+�2

√
p4�,

e = 3p6 + �√12p6 − 3�, e = p3 + �(p3 + √
6p3)/2�, respectively, and that there are

amongst them those, which grow like a spiral. In fact, the proof of [19] implies that those
extremal animals are, moreover, extremal in our sense.

Next two theorems give a full solution of the problem for(r, q) = (5,3), (3,5).

Theorem 7. Let (r, q) = (5,3). Then

1. With exception of three cases(n(9) = 10, n(10) = 12, n(11) = 15), n(x) = x, if
x ≡ 0,8,9(mod 10), n(x) = x − 1 if x ≡ 6,7(mod 10), n(x) = x − 2, otherwise, and
extremal polycycle is unique ifn(x) = x.

2. All possible densities of(5,3)-polycycles, beside exceptions forp5 = 9,10,11,form the
segment[0,1].

The proof uses the above lemma and the list (found by exhaustive search) of all connected
components of kernels of (5,3)-polycycles; clearly,Ei , 1� i � 5, are the first members of
elementary (5,3)-polycyclesEi , i �1, with i+2 pentagons andi interior vertices. The ker-
nels are subgraphs induced by all interior vertices of elementary (5,3)- and (3,5)-polycycles
on Figs. 5 and 6. Any (5,3)-polycycle can be obtained by gluing of elementary poly-
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Fig. 5. Elementary (5,3)-polycycles and their kernels.

cycles byopen(i.e. such that both vertices have degree 2) edges. Theorem 7 is obtained by
consideration of all such gluings.

Theorem 8. Let (r, q) = (3,5). Then

1. n(x) = �x/3� if x ≡ 0,1(mod 18), with exception ofn(18) = 8, n(19) = 9; otherwise,
n(x) = �(x − 2)/3�, with exception ofn(x) = �(x + 1)/3� for x = 10–14, 28, 30–33,
35,andn(x) = �(x + 4)/3� for x = 15–17, 34.

2. All possible densities of(3,5)-polycycles, besides exceptions given in(1) above, form the
segment[0, 1

3]; all rational densities can be realized by finite unproper polycycles.
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Fig. 6. Elementary (3,5)-polycycles and their kernels.

3. For p3 ≤ 19 the following holds: n(x) = 0 if 0 ≤ x ≤ 4, n(x) = 1 if 5 ≤ x ≤ 7,
n(x) = 2 if 8 ≤ x ≤ 9, n(x) = 3 if 10 ≤ x ≤ 11,n(x) = 4 if 12 ≤ x ≤ 13,n(14) = 5,
n(x) = 6 if 15 ≤ x ≤ 16,n(17) = 7, n(18) = 8, n(19) = 9.

Moreover, forp3 ≤ 19,all extremal polycycles are proper and the reciprocal of an extremal
one is also extremal; extremal ones are unique, except the casesp3 = 9,11 (two polycycles)
andp3 = 4,7,13,16 (three polycycles).

We used for the proof the same strategy as for the proof of Theorem 7, but the number
of cases to consider is much larger in this case. Other difference with(5,3)-polycycles is
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that we should use now (in order to glue some elementary(3,5)-polycycles) the elementary
polycycled with empty kernel. So we give only Fig. 6 of all minimal(3,5)-polycycles with
connected kernels. Clearly,ei , 1� i � 6, are the first members of the family of elementary
(3,5)-polycyclesei , i � 1, with 3i + 2 triangles andi interior vertices.

Remark that the kernels of(5,3)-polycyclesAi,1 ≤ i ≤ 5, of Fig. 5 are all non-trivial
isometric(5,3)-polycycles; they are also allcircumscribed(5,3)-polycycles, i.e.r-gons
can be added around the perimeter, such that they will form a simple circuit. (They were
found in [8]; such(6,3)-polycycles are useful in organic chemistry.) All circumscribed
(3,5)-polycycles are the kernels of polycyclesai,1 ≤ i ≤ 5, andci,1 ≤ i ≤ 4 of Fig. 6.
It turns out that all polycyclesG in one of Figs. 5 and 6, admitting the dual graphG∗ in
another one, are as follows:A∗

1 = a5, A∗
2 = c3, A∗

3 = c4, A∗
4 = e2, A∗

5 = e1; E∗
1 = d and

a∗
1 = A3, a∗

2 = A4, a∗
4 = C3, a∗

5 = A5, c∗
1 = E4, c∗

2 = E3, c∗
3 = E2, c∗

4 = E1; e∗
1 = D.

A6 occurs also in Fig. 1; its dual is infinite(3,4)-polycycle there.
For any(r, q), we have only the bounds given in Theorem 9 below; they are linear with

respect topr . The lower bound is attained, e.g., by the star ofq r-gons with one common
(interior) vertex. For Euclidean(p, q) = (6,3), (4,4), (3,6), the upper bound is attained
in the limit.

Theorem 9. Any (r, q)-polycycle, such that each of its r-gon contains an interior vertex,
satisfy topr/q ≤ nint < rpr/q.

In order to prove those bounds, consider complexX(G) from Section 3.2. Divide each
of its face (a regularr-gon) intor 4-gons by the lines from the center to the mid-points
of edges and, denoting byσ the area of 4-gon. Using that anyr-gon contains at least one
interior vertex, observe thatprσ ≤ nintqσ < prrσ .

5.2. Non-extendible polycycles

Consider now another notion of maximality, appropriate to polycycles. Call an(r, q)-
polycyclenon-extendibleif it is not a proper subgraph of another(r, q)-polycycle. Four ex-
amples of non-extendible polycycles, depicted below, are: vertex-split(34) and vertex-split
(35) (defined in Section 3) and two infinite polycycles (Z-paths of quadrangles and of
triangles; both appear also in Fig. 1).

Theorem 10. All non-extendible(r, q)-polycycles are(rq), four above examples, possibly
(but we conjecture their non-existence) some other finite(3,5)-polycycles and, for any
(r, q) �= (3,3), (3,4), (4,3), a continuum of infinite ones.

For example, a continuum of non-extendible(5,3)-polycycles comes as all infinite
(in both directions) aperiodic sequences of glued (by doubled edges) polycyclesC2 (in the
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column 2 of Fig. 5) from Fig. 5, and its upside down version, say,C′
2. The same procedure,

used for polycyclesb2, e6 from Fig. 6, gives a continuum of non-extendible(3,5)-polycycles.
The (4,4)-cactus from Fig. 2 is also non-extendible since all its vertices have
degree 4.

The hardest part of the proof of the above theorem was to show that any finite non-
extendible polycycleG is spheric. Using a discrete analog of Gauss–Bonnet formula (see
[1, Theorem 1.8.2, p. 76]), applied toK(G)), we get that the curvature ofK(G) is positive:
the curvature is equal to excess of the sum of angles of geodesicn-gon, bounding the disc
of perimetern, over (n − 2)π , i.e. the sum of angles of Euclideann-gon, namely using
non-extendibility of finite polycycleG, we get an estimation of above sum of angles, which
imply positivity of the curvature.

Finally, consider(r, q)-polycycles, such that any interior point of any interior face has
degree 1 of the cell-homomorphism onto(rq). The number of such polycycles, which are
not extendible without losing this property, is equal to 0 for(p, q) = (3,3), (3,4) and equal
to 1 for (p, q) = (4,3) (it is P2 × P5). This number is finite for(p, q) = (5,3), (3,5) and
infinite, otherwise.

6. Metric properties of polycycles: embedding into Qm, Zm

Call a polycycleembeddableif the metric space of its vertices (with usual shortest-path
metric) is embeddable isometrically, up to a scaleλ, into a hypercubeQm, m < ∞, or (if
the graph is infinite) into a cubic latticeZm, m ≤ ∞; see [9,6,11] for details. We have the
following embeddings of(rq): (33), (43) is embeddable intoQ3; (34) into Q4; (35) into
Q6; (53) intoQ10; (44) intoZ2; (36), (63) intoZ3 and all others intoZ∞. So, any isometric
polycycle is embeddable.

Examples of non-embeddable polycycles are:(43) − e, (34) − e, (53) − e, (35) − e,
vertex-split(34), vertex-split(35)and four polycycles, given in the figures in theorem below.
Amongst above 10 polycycles only vertex-split(34) and vertex-split(35) are helicenes;
amongst remaining eight proper polycycles only one on the right-hand side of the figures
in theorem below, are induced ones (they areE4 andc3 of Figs. 5 and 6, respectively).

Theorem 11.

1. For (r, q) �= (5,3), (3,5), there are exactly three non-embeddable polycycles: (43)− e,
(34) − e and the vertex-split(34),

2. except(53) itself, any(5,3)-polycycle is embeddable if and only if it does not con-
tain, as an induced subgraph, neither of the two proper polycycles withp5 = 6, given
below

3. we conjecture that, except(35) and(35) − v, any(3,5)-polycycle is embeddable if and
only if it does not contain, as an induced subgraph, neither of the two proper 10-vertex
polycycles, given below
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There are no other non-embeddable (3,5)-polycycle withp3 ≤ 10.

Any outerplanar polycycle is embeddable, as well as any connected outerplanar graph.
Amongst 39 proper(5,3)-polycycles, the embeddable ones are:(53), three withp5 =

7, 9 with p5 = 6 (all but two given in (2) above) and all 14 withp5 ≤ 5. Amongst
(5,3)-polycycles of Fig. 5, the embeddable ones areA1 ⊃ A5, C3 ⊃ E3 ⊃ E2 ⊃ E1 ⊃ D

(the sign “⊃” denotes here “contains as a partial subgraph”). Amongst(5,3)-polycycles of
Fig. 1, only the infinite one with the symmetrypma2 and interior vertices, is not embeddable.

Amongst(3,5)-polycycles of Fig. 6, the embeddable ones area1 ⊃ a5 ⊃ b4 ⊃ c4,
e3 ⊃ e2 ⊃ e1 ⊃ d. (3,5)-Polycyclesa5 = (35) − v, a2 = (35) − e in Fig. 6 contain the
forbidden(3,5)-polycycles from (3) above, as induced non-isometric subgraphs.

Embeddable(r, q)-polycycles have the scaleλ = 1 if r is even and 2, otherwise. Consider
any finite embeddable polycycle with perimeterd andk closed zones, i.e. cyclic sequences of
opposite (alternating) non-boundary edges, see [6,11]. Then it is embeddable intoQ(d/2)+k

if r is even (this implies thatd is also even), and it is embeddable, with scale 2, intoQd+k if
r is odd. For example, amongst all embeddable polycycles in Figs. 5 and 6, all withk > 0
areA1, a1, a5; they havek = 5,3,1, respectively.

There is a continuum of(6,3)-polycycles, which are embeddable only intoZ∞: take all
infinite (in both directions) paths of(6,3)-polycyclesP := C0,1,...,9+ (3,8), glued each by
its edges named (4,5) and (6,7); the choice how to glue, by edges of the same or different
name, should be done aperiodically.

7. Some relatives of (r, q)-polycycles

It will be interesting to find some analog of the above results for a generalization of
polycycles on other surfaces. The following examples illustrate arising options:

1. There is no straightforward analog of Theorem 1 for, say, “polycycles on the torusT 2”:
2-connectedness of the graph does not imply that its embedding onT 2 is a simply
connected union of faces (a handle can break it).

2. The ring of three (or four) hexagons is example of planar, but not simply connected
“polyhex” (in a large sense used in chemistry) without any (or locally homeomorphic)
homomorphism on(63). Theorem 3 also does not admit a generalization already on
mono-5-(63), i.e. on the partition of the plane by regular hexagons around one central
regular pentagon, having only vertices of degree 3 (in fact, a path of a pentagon and six
hexagons, having six consecutive vertices of degree 3 on the boundary circuit, is not
a subgraph of mono-5-(63), but it is also not a “helicene”, since after mapping of its
pentagon on the pentagon of mono-5-(63), the last hexagon of the path also maps on
this pentagon). On the other hand, the cell-map of Theorem 3 exists even if we permit
boundary vertices of degree greater thanq, but this map will not be locally homeomorphic
around those “singularities”.
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Fig. 7. Cross-ring as “not simply connected(8,3)-polycycle”.

3. Considercross-ring, depicted in Fig. 7: first onR2 as the skeleton of dual disphenoid with
two new vertices added on some eight edges, and next inR3 as the skeleton of a polyhedral
(2-connected) sphere with one hole and handle. All eight planar realizations of this graph
are not polycyclic: they have both 8- and 9-gonal faces. All conditions of the criterion in
Theorem 1 are satisfied, except of (4):v−e+f = 28−34+8 �= 1. But this polyhedral
sphere permits to consider the cross-ring as “not simply connected(8,3)-polycycle”
with p8 = 5; this polyhedron have five regular 8-gonal faces: four indicated by the
number “8” on the left-hand side of Fig. 7 and one bounded byC11,12,4,5,25,26,18,19. The
handle prevents it from embedding intoR2 and from cell-homomorphism into(83). All
vertices 1,2, . . . ,28 are on the boundary of the disc.

Finally, we mention two following relatives of finite(r, q)-polycycles. See [2 and references
therein] (mainly authored by M. Perkel) for the study ofstrict polygonalgraphs, i.e. graphs
of girth r and vertex-degreeq, such that any pathP2 belongs to uniquer-circuit ofG. See [5,
pp. 546–547 and references therein] for information onequivelarpolyhedra, i.e. polyhedral
embedding, with convex faces, of(r, q)-map(i.e. all faces are combinatorialr-gons and the
vertex-degree of the skeleton isq) into R3, such that all flags are equal. So, in both these
cases graphs areq-regular, have girthr, Euler characteristicv − e + f = v(6− r)/2r and
coincide with Platonic polyhedra in the case of genus 0. Recall that, for an(r, q)-polycycle,
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any non-boundary pathP2 belongs to uniquer-circuit and there exist polyhedral realization
in R3 with all interior faces being regularr-gons.
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